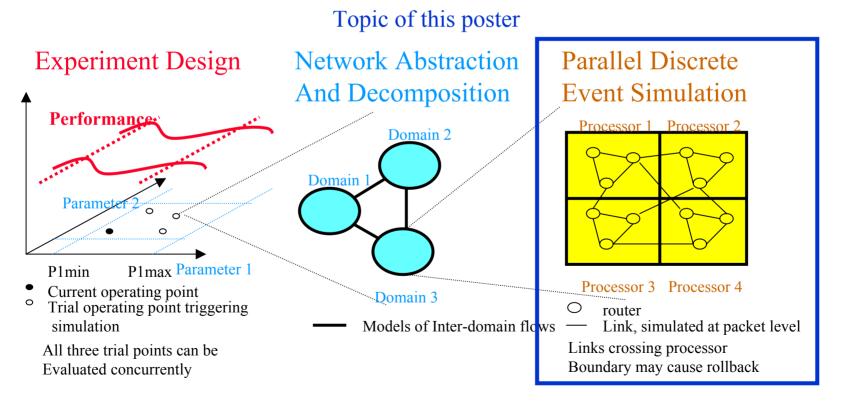
Fast Optimistic Network Simulation

Chris Carothers Paul Belemjian

Rensselaer Polytechnic Institute, Troy, NY


http://www.cs.rpi.edu/~szymansk/sonms.html

email: chrisc@cs.rpi.edu

DARPA PI Meeting April 2, 2001

Novel goals of the research:

- On-Line Network Modeling and Simulation scalable to multiple domains and hundreds of thousands of flows
- Second order traffic and routing control

ROSS: Rensselaer's Optimistic Simulation System

ROSS demonstrates that highly efficient execution is possible when using little optimistic memory....

- Extreme Performance
 - * 1,250,000 events/sec, 4 PE case
 - * uses COTS PC hardware
- Low Memory
 - less than 1% optimistic memory for largescale / low event grain models.
- Target Application
 - * very low event granularity models
 - * wireless / packet-level network models

ROSS' performance is achieved by...

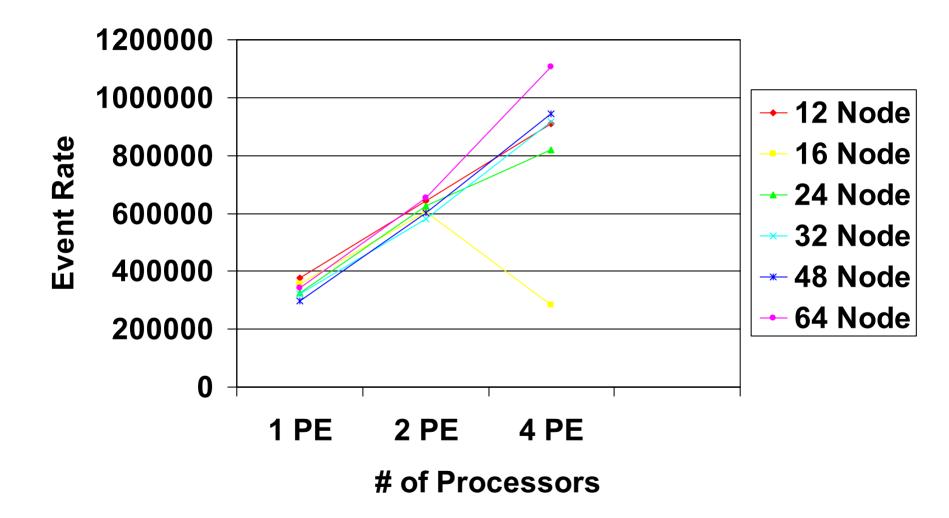
- optimistic synchronization
- Pointer-based, modular implementation framework
- Reverse computation
- Fujimoto's GVT algorithm
- Kernel Processes (KPs)

As a demonstration of ROSS' performance, we have conducted an initial comparison with NS.

Platform and Experiment Setup

Network Model

- * TCP/IP
- * uses reverse computation for state saving
- * 3 tier network made up of sources, subnet routers and backbone routers.
- * A network of size N has N³ + N² + N nodes.


Platform

- * COTS PC-based mulitprocessor systems.
- * Quad processor, Pentuim III
- * 1 GB RAM.
- * Linux OS

TCP/IP Uniprocessor Performance

	Nodes	Speedup	Exec. Time (seconds)	Packets	% Diff
ns	2	-	9.47	1708543	
	8 10	-	371 1669	31804 30913	
ROSS	2 8 10	2.252561112	4.2 1.45 1.5	1684238 26283 28325	1.42 17.35 8.37

ROSS: TCP/IP Parallel Performance

ROSS Embedded Capabilities

- A version of ROSS current runs as an embedded system inside the Linux OS (directly linked).
- User programs invoke ROSS thru the ross system call.
- Results and config parameters are pass thru system call.
- New capabilities:
 - * allows for parallel simulations to be embedded into network elemeents.
 - * allows for fine grain control of simulator CPU resources.
 - * allows direct access to OS level network performance statistics
 - * improves simulator performance by 10 to 15% over user-space parallel performance.
 - * potential for improving stability of optimistic synchronization.

Future Work on ROSS/TCP Model...

- Strong validation between ns and ROSS/TCP models across a wide rang of configurations
- Implement RED into TCP model.
- Implement PGM model on-top of TCP/IP model
- Flexible specification of network topology.
- Experiment with ROSS as an embedded simulation environment.